1 PRODUCT AND COMPANY IDENTIFICATION

Organic Peroxides
2000 Market Street
Philadelphia, Pa 19103

EMERGENCY PHONE NUMBERS:
Chemtrec: (800) 424-9300 (24hrs) or (703) 527-3887
Medical: Rocky Mountain Poison Control Center
(303) 623-5716 (24Hrs)

Customer Service Information Telephone Numbers
Phone Number Available Hrs
1-800-558-5575 Business Hours

Product Name LUPEROX DHD-9
Product Synonym(s) Lupersol DHD-9*
Chemical Family Organic Peroxide - Ketone Peroxide
Chemical Formula Phthalate free formulation
Chemical Name Methyl Ethyl Ketone Peroxide Mixture in Plasticizers
EPA Reg Num
Product Use Polymerization Initiator

2 COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS RegistryNumber</th>
<th>Typical Wt. %</th>
<th>OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2,4-Trimethyl-1,3-pentanediol diisobutyrate</td>
<td>6846-50-0</td>
<td>59%</td>
<td>Y</td>
</tr>
<tr>
<td>Methyl ethyl ketone peroxide(s)</td>
<td>1338-23-4</td>
<td>32-33%</td>
<td>Y</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>7722-84-1</td>
<td>< 2%</td>
<td>Y</td>
</tr>
<tr>
<td>Proprietary Component</td>
<td>NJTSN 03365400-5071P</td>
<td>< 2%</td>
<td>Y</td>
</tr>
<tr>
<td>Water</td>
<td>7732-18-5</td>
<td>< 2%</td>
<td>N</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>78-93-3</td>
<td>1-2%</td>
<td>Y</td>
</tr>
</tbody>
</table>

The substance(s) marked with a “Y” in the OSHA column, are identified as hazardous chemicals according to the criteria of the OSHA Hazard Communication Standard (29 CFR 1910.1200)

This material is classified as hazardous under Federal OSHA regulation.

The components of this product are either on the TSCA Inventory list or exempt as impurities.

3 HAZARDS IDENTIFICATION

Emergency Overview
Colorless oily liquid; Ketone odor

DANGER!
ORGANIC PEROXIDE
CAUSES EYE BURNS. MAY CAUSE BLINDNESS.
CAUSES SKIN IRRITATION.
HARMFUL IF SWALLOWED.
MAY CAUSE RESPIRATORY TRACT IRRITATION.
MAY CAUSE ALLERGIC SKIN REACTION.

Potential Health Effects
Inhalation and skin contact are expected to be the primary routes of occupational exposure to this material. Based on its composition, it is anticipated to be moderately toxic if swallowed, slightly toxic if absorbed through skin, practically non-toxic if inhaled and corrosive to eyes and severely irritating to skin. Prolonged or repeated contact removes oils from the skin and may dry skin causing irritation, redness and rash; allergic skin reactions may also occur. High vapor concentrations are irritating to the eyes and respiratory tract with cough, chest discomfort and, in severe cases, pulmonary edema (accumulation of fluid in the lungs), and may result in central nervous system (CNS) effects such as weakness, headache, dizziness, nausea, drowsiness and, in severe exposures, loss of consciousness and death. If swallowed, this material can cause severe irritation and injury to the mouth, throat and stomach and, in severe cases, death. Mild to severe lung injury may occur if this material is drawn into the lungs (aspirated) during swallowing, or during vomiting after swallowing. Symptoms of injury may include increased breathing and heart rate, coughing and related signs of respiratory distress.

4 FIRST AID MEASURES

IF IN EYES, immediately flush with plenty of water for at least 15 minutes. Get medical attention immediately.

IF ON SKIN, immediately flush the area with plenty of water. Remove contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Destroy contaminated shoes.

IF SWALLOWED, do NOT induce vomiting. Give water to drink. Get medical attention immediately. NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON.

IF INHALED, remove to fresh air. If breathing is difficult, get medical attention.

5 FIRE FIGHTING MEASURES

Fire and Explosive Properties

- Auto-Ignition Temperature: NE
- Flash Point: 74 C/165 F (Seta CC Flash Point Method)
- Flammable Limits: Upper NE, Lower NE

Extinguishing Media

Use water spray, foam or dry chemical.

Fire Fighting Instructions

- Fight fire with large amounts of water from a safe distance. Use water spray to cool containers exposed to fire.
- Fire fighters and others who may be exposed to products of combustion should wear full fire fighting turn out gear (full Bunker Gear) and self-contained breathing apparatus (pressure demand NIOSH approved or equivalent). Fire fighting equipment should be thoroughly decontaminated after use. After a fire, wait until the material has cooled to room temperature before initiating clean up activities.

Fire and Explosion Hazards

- Contact with incompatible materials or exposure to temperatures exceeding the SADT may result in a self accelerating decomposition reaction with release of flammable vapors which may autoignite.
6 ACCIDENTAL RELEASE MEASURES

In Case of Spill or Leak
Use inert, non-combustible absorbant material. Sweep or scoop up using non-sparking tools. Wet down and dispose of immediately. Consult a regulatory specialist to determine appropriate state or local reporting requirements, for assistance in waste characterization and/or hazardous waste disposal and other requirements listed in pertinent environmental permits.

7 HANDLING AND STORAGE

Handling
Contact with incompatible materials or exposure to temperatures exceeding SADT (See Section (9) may result in a self accelerating decomposition reaction with release of flammable vapors which may autoignite. Keep away from heat sparks and flame. Avoid contamination. Use only with adequate ventilation. Keep container closed. Do not reuse container as it may retain hazardous product residue. Wash thoroughly after handling. Do not get in eyes, on skin or on clothing. Avoid breathing vapor or mist. Do not taste or swallow. Avoid prolonged or repeated contact with skin.

Storage
Store below 38 C/100 F to maintain stability and active oxygen content. Detached storage is preferred. Store out of direct sunlight in a cool well-ventilated place. Store away from combustibles and incompatible materials. Refer also to National Fire Protection Agency (NFPA) Code 432, Code for the Storage of Organic Peroxide Formulations.

8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering Controls
Investigate engineering techniques to reduce exposures below airborne exposure limits. Provide ventilation if necessary to control exposure levels below airborne exposure limits (see below). If practical, use local mechanical exhaust ventilation at sources of air contamination such as open process equipment.

Eye / Face Protection
Where there is potential for eye contact, wear a face shield, chemical goggles, and have eye flushing equipment immediately available.

Skin Protection
Wear appropriate chemical resistant protective clothing and chemical resistant gloves to prevent skin contact. Consult glove manufacturer to determine appropriate type glove material for given application. Wear chemical goggles, a face shield, and chemical resistant clothing such as a rubber apron when splashing may occur. Rinse immediately if skin is contaminated. Remove contaminated clothing promptly and wash before reuse. Clean protective equipment before reuse. Provide a safety shower at any location where skin contact can occur. Wash skin thoroughly after handling.

Respiratory Protection
Avoid breathing vapor or mist. Where airborne exposure is likely, use NIOSH approved respiratory protection equipment appropriate to the material and/or its components. Full facepiece equipment is recommended and, if used, replaces need for face shield and/or chemical goggles. If exposures cannot be kept at a minimum with engineering controls, consult respirator manufacturer to determine appropriate type equipment for given application. Observe respirator use limitations specified by NIOSH or the manufacturer. For emergency and
8 EXPOSURE CONTROLS / PERSONAL PROTECTION

other conditions where there may be a potential for significant exposure, use an approved full face positive-pressure, self-contained breathing apparatus or positive-pressure airline with auxiliary self-contained air supply. Respiratory protection programs must comply with 29 CFR § 1910.134.

Airborne Exposure Guidelines for Ingredients

<table>
<thead>
<tr>
<th>Exposure Limit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen peroxide</td>
<td></td>
</tr>
<tr>
<td>ACGIH TWA</td>
<td>1 ppm 1.4 mg/m3</td>
</tr>
<tr>
<td>OSHA TWA PEL</td>
<td>1 ppm 1.4 mg/m3</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td></td>
</tr>
<tr>
<td>ACGIH STEL</td>
<td>300 ppm (885 mg/m3)</td>
</tr>
<tr>
<td>ACGIH TWA</td>
<td>200 ppm (590 mg/m3)</td>
</tr>
<tr>
<td>OSHA TWA PEL</td>
<td>200 ppm (590 mg/m3)</td>
</tr>
<tr>
<td>Methyl ethyl ketone peroxide(s)</td>
<td></td>
</tr>
<tr>
<td>ACGIH CEILING</td>
<td>0.2 ppm (1.5 mg/m3)</td>
</tr>
</tbody>
</table>

-Only those components with exposure limits are printed in this section.
-Skin contact limits designated with a "Y" above have skin contact effect. Air sampling alone is insufficient to accurately quantify exposure. Measures to prevent significant cutaneous absorption may be required.
-ACGIH Sensitizer designator with a value of "Y" above means that exposure to this material may cause allergic reactions.
-WEEL-AIHA Sensitizer designator with a value of "Y" above means that exposure to this material may cause allergic skin reactions.

9 PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance/Odor</td>
<td>Colorless oily liquid; Ketone odor</td>
</tr>
<tr>
<td>pH</td>
<td>NA</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>0.999 25/25C</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>NE</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>NE</td>
</tr>
<tr>
<td>Melting Point</td>
<td>NE</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>< -40 C</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>NE</td>
</tr>
<tr>
<td>Solubility In Water</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Percent Volatile</td>
<td>98% VOC</td>
</tr>
<tr>
<td>Viscosity</td>
<td>13.0 cps@25C</td>
</tr>
<tr>
<td>SADT</td>
<td>85 C/185 F</td>
</tr>
</tbody>
</table>

This material is chemically unstable and should only be handled under specified conditions. See HANDLING AND STORAGE section of this MSDS for specified conditions.

SADT - Self Accelerating Decomposition Temperature. Lowest temperature at which the tested package size will undergo a self-accelerating decomposition reaction. This reaction will generate flammable vapors which may autoignite. The length of time to generated a decomposition reaction, after the SADT has been reached or exceeded, is dependent upon how much the SADT has been exceeded and the length of time needed for the reaction exotherm (heat spike from increasing decomposition rate) to initiate a rapid decomposition reaction. Typically, SADT is inversely proportional to package size. Larger packages will have a lower SADT due to smaller ratio to heat transfer area to volume of product.

Other Physical Data

Active Oxygen Content = 8.7-9.0%

Refractive Index= 1.4356 @25 C
10 STABILITY AND REACTIVITY

Stability
This material is chemically unstable and should only be handled under specified conditions. See HANDLING AND STORAGE section of this MSDS for specified conditions.

SADT - Self Accelerating Decomposition Temperature. Lowest temperature at which the tested package size will undergo a self-accelerating decomposition reaction. This reaction will generate flammable vapors which may autoignite. The length of time to generated a decomposition reaction, after the SADT has been reached or exceeded, is dependent upon how much the SADT has been exceeded and the length of time needed for the reaction exotherm (heat spike from increasing decomposition rate) to initiate a rapid decomposition reaction. Typically, SADT is inversely proportional to package size. Larger packages will have a lower SADT due to smaller ratio to heat transfer area to volume of product.

Hazardous Polymerization
Does not occur.

Incompatibility
Contact with strong acids, alkalis, oxidizers, transition metal salts, promoters/accelerators, & reducing agents may result in a violent decomp reaction or in product degradation. (see SECTION 16)

Hazardous Decomposition Products
Temperatures at or above the SADT can result in the release of hazardous decomposition products which are flammable and may autoignite.

11 TOXICOLOGICAL INFORMATION

Toxicological Information
Data on this material and/or its components are summarized below.

Methyl ethyl ketone peroxide(s)
Single exposure (acute) studies indicate that this material (40-60% in dimethyl phthalate) is moderately toxic to rats if swallowed (LD50 484 mg/kg), slightly toxic to rabbits if absorbed through skin (LD50 4,000 mg/kg), practically non-toxic to rats if inhaled (4-hr LC50 17-50 mg/l), corrosive to rabbit eyes, and moderately irritating to rabbit skin (4-hr exposure, 4.5/8.0). Following an allergic skin reaction in a paint sprayer, patch testing produced an allergic skin reaction with this material as well as other components of the paint. However, subsequent patch testing did not produce allergic skin reactions in 34 healthy subjects. Swallowing of this material was reported to cause liver injury in one case report.

Repeated oral administration of this material was reported to result in decreased body weight, mild liver and kidney injury and death in rats. Following repeated application of this material in dimethyl phthalate to the skin of rats and mice, severe skin damage and animal deaths (only at the highest dose levels) were the primary effects. Spleen and bone marrow changes considered secondary to the severe skin damage were noted in animals at the high doses. Higher doses applied to rat and mouse skin for a shorter time produced similar effects. Long-term repeated skin application of this material in dimethyl phthalate was reported to enhance skin tumor production in mice irradiated with UVB. This material has produced genetic changes in standard tests using bacterial or animal cells. However, no genetic changes occurred in a standard test using animals.

2,2,4-Trimethyl-1,3-Pentanediol Diisobutyrate
Single exposure (acute) studies indicate that this material is no more than slightly toxic if swallowed (rat LD50
>3,200 mg/kg), practically non-toxic if absorbed through skin (guinea pig LD50 >20 ml/kg) or inhaled (rat 6-hr LC50 >5.3 mg/l), and slightly irritating to rabbit eyes and guinea pig skin. No skin allergy was observed in guinea pigs following repeated exposures. Increased liver weights, which were probably adaptive changes due to the induction of drug metabolizing enzymes in these tissues, were observed in rats or dogs following long-term administration in their feed. This material is eliminated in the excreta of rats following a single oral dose with little or no retention in the tissues or organs.

Methyl Ethyl Ketone

Single exposure (acute) studies indicate that this material is no more than slightly toxic to rats if swallowed (LD50 2,700-5,600 mg/kg), practically non-toxic to rabbits if absorbed through skin (LD50 5,000-13,000 mg/kg) or rats if inhaled (4-hr LC50 11,700 ppm), and moderately irritating to rabbit eyes and skin. Repeated exposure of humans to controlled skin contact studies with this material produced no skin irritation or skin allergy. Central nervous system (CNS) effects and peripheral neuropathy have been reported in the industrial setting following exposure to mixtures containing this material; however, these mixtures contained other solvents known to cause nervous system injury.

Following repeated inhalation exposure, slight changes in organ weights and blood chemistry were reported in rats. No evidence of nervous system injury following long-term inhalation exposure to this material has been observed in rats, chickens, mice or cats. Animal studies have shown this material to increase the severity of, or shorten the onset of, irreversible nervous system effects due to n-hexane and methyl butyl ketone, as well as effects of chloroform and carbon tetrachloride. This material did not increase the incidence of tumors in long-term skin application studies in mice. A small number of major birth defects were reported in rats exposed to this material by inhalation during pregnancy at a level (3,000 ppm) which produced toxic effects in the offspring, but not in the mothers. However, no birth defects were found in a second repeat study with rats using very similar exposure conditions, while adverse effects were noted in the mothers and their offspring. In mice exposed to 3000 ppm of this material by inhalation during pregnancy, toxic effects were observed in the mothers (mild effects only) and their offspring. This material has generally produced no genetic changes in standard tests using animals and animal or bacterial cells. A positive response was reported in one assay using yeast cells.

Hydrogen Peroxide

Single exposure (acute) studies indicate that this material is moderately toxic if swallowed (rat LD50 805 mg/kg; 70% solution), practically non-toxic if absorbed through skin (rabbit LD50 >6,500 mg/kg; 70% solution), slightly toxic if inhaled (no mortality in rats at 170 mg/m3 for 4 hours), and corrosive to rabbit eyes and skin. No skin allergy was observed in guinea pigs following repeated exposure. Solutions are commonly used for disinfecting wounds, bleaching hair or as a mouth wash and generally do not show adverse skin reactions. Accidental ingestion by children has resulted in death from lung edema, stomach erosions and gas distention and burns to the throat and esophagus. Eye and throat irritation and bleaching of hair have been reported by workers exposed to this material in the atmosphere.

Several studies have been conducted by administering material in the drinking water of mice and rats. The primary findings were irritation of the gastric mucous. Repeated inhalation exposure of rats and mice caused nasal irritation without notable adverse effects on the lining of the upper respiratory system. Repeated inhalation exposure of dogs resulted in upper respiratory tract irritation and emphysematous changes in the lungs. Generally, long-term oral dosing caused no adverse effects other than erosion of the stomach lining from direct application of the test material. Several studies have shown an increase in gastrointestinal tract tumors in mice and rats following long-term exposure in the drinking water. Concentrations less than 1% do not promote gastrointestinal tumors. The U.S. Federal Drug Administration has concluded that there is insufficient evidence of carcinogenicity and the International Agency for Research on Cancer (IARC) has concluded that this chemical is not classifiable as to its carcinogenicity to humans (Group 3). Genetic changes were observed in tests using bacteria and animal cells, but not in animals.
12 ECOLOGICAL INFORMATION

Ecotoxicological Information
Data on this material and/or its components are summarized below.

Methyl ethyl ketone peroxide(s)
This material is slightly toxic to guppies (96-hr LC50 44.2 mg/l).

2,2,4-Trimethyl-1,3-Pentanediol Diisobutyrate
This material is no more than moderately toxic to fathead minnow (96-hr LC50 >1.55 mg/l), ramshorn snail (96-hr LC50 >1.55 mg/l), aquatic earthworm (96-hr LC50 >1.55 mg/l), sideswimmer (96-hr LC50 >1.55 mg/l), pill bug (96-hr LC50 >1.55 mg/l), flatworm (96-hr LC50 >1.55 mg/l), and Daphnia (96-hr EC50 >1.46 mg/l).

Methyl Ethyl Ketone
This material is practically non-toxic to goldfish, brine shrimp, Daphnia magna, fathead minnow, mosquito fish, bluegill sunfish and golden orfe (LC50s >1,000 mg/l).

This material inhibits fungal growth and is reported to be bacteriostatic to several microorganisms (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Leuconostoc citrovorum and Streptococcus thermophilus) at levels of 10-100 mg/l. Growth inhibition has also been reported for freshwater algae at levels ranging from 120 mg/l (blue-green algae) to 4,300 mg/l (green algae).

Hydrogen Peroxide
This material is highly toxic to marine algae (LC50 0.85 mg/l), moderately toxic to Daphnia magna (EC50 7.7 mg/l) and Daphnia pulex (LC50 2.4 mg/l). It is slightly toxic to coho salmon (LC50 10 mg/l), channel catfish (LC50 37.4 mg/l), golden orfe (LC50 35 mg/l), fathead minnow (LC50 16.4 mg/l), snail (LC50 17.7 mg/l) and bacteria (EC50 30 mg/l).

Chemical Fate Information
Data on this material and/or its components are summarized below.

Methyl ethyl ketone peroxide(s)
This material was reported to be readily biodegradable in a closed bottle system. An EC50 of 16 mg/l was reported in an activated sludge respiration inhibition test.

2,2,4-Trimethyl-1,3-Pentanediol Diisobutyrate
In a 28-day modified Sturm Test, this material was found to undergo 32-59% degradation to CO2. The bioconcentration factor without metabolism was estimated to be 670 and with metabolism 1-40. The log Pow is estimated to be 4.1

Methyl Ethyl Ketone
Extensive data suggests that this material is readily biodegradable. It is non-toxic to sludge microorganisms at concentrations up to 800 ug/l.

13 DISPOSAL CONSIDERATIONS

Waste Disposal
Dispose of in accordance with federal, state and local regulations. Dilution followed by incineration is the preferred method. Dilution ration of 10:1 in a clean, compatible, combustible solvent (i.e., Fuel Oil #2, mineral oil) will reduce reactivity hazard during incineration and transportation.
14 TRANSPORT INFORMATION

<table>
<thead>
<tr>
<th>DOT Name</th>
<th>Organic Peroxide Type E, Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT Technical Name</td>
<td>[Methyl Ethyl Ketone Peroxide(s), <= 40%]</td>
</tr>
<tr>
<td>DOT Hazard Class</td>
<td>5.2</td>
</tr>
<tr>
<td>UN Number</td>
<td>3107</td>
</tr>
<tr>
<td>DOT Packing Group</td>
<td>PG II</td>
</tr>
<tr>
<td>RQ</td>
<td>Methyl Ethyl Ketone Peroxide(s) = 10 lbs.</td>
</tr>
</tbody>
</table>

15 REGULATORY INFORMATION

Hazard Categories Under Criteria of SARA Title III Rules (40 CFR Part 370)

<table>
<thead>
<tr>
<th>Immediate (Acute) Health</th>
<th>Fire</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed (Chronic) Health</td>
<td>Reactive</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Sudden Release of Pressure</td>
<td>N</td>
</tr>
</tbody>
</table>

The components of this product are either on the TSCA Inventory list or exempt as impurities.

Ingredient Related Regulatory Information:

<table>
<thead>
<tr>
<th>SARA Reportable Quantities</th>
<th>CERCLA RQ</th>
<th>SARA TPQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen peroxide</td>
<td>NE</td>
<td>1000 LBS</td>
</tr>
<tr>
<td>Water</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone peroxide(s)</td>
<td>5000 LBS</td>
<td></td>
</tr>
<tr>
<td>2,2,4-Trimethyl-1,3-pentanediol diisobutyrate</td>
<td>10 LBS</td>
<td></td>
</tr>
<tr>
<td>Proprietary Component</td>
<td>NE</td>
<td></td>
</tr>
</tbody>
</table>

SARA Title III, Section 313

This product does contain chemical(s) which are defined as toxic chemicals under and subject to the reporting requirements of, Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 986 and 40 CFR Part 372. See Section 2

Methyl ethyl ketone

SARA Title III, Section 302

This product does contain chemical(s), as indicated below, currently on the Extremely Hazardous Substance List, Section 302, SARA Title III. See Section 2 for further details regarding concentrations and registry numbers.

Hydrogen peroxide

DEA - precursor element

This product does contain the following chemical(s), as indicated below, currently on the DEA Final Precursors and Essential Chemicals Listed Components list.

Methyl ethyl ketone

Massachusetts Right to Know

This product does contain the following chemicals(s), as indicated below, currently on the Massachusetts Right to Know Substance List.

Hydrogen peroxide
Methyl ethyl ketone
Methyl ethyl ketone peroxide(s)

New Jersey Right to Know

This product does contain the following chemical(s), as indicated below, currently on the New Jersey Right-to-Know Substances List.
New Jersey Right to Know
This product does contain the following chemical(s), as indicated below, currently on the New Jersey Right-to-Know Substances List.

- Hydrogen peroxide
- Methyl ethyl ketone
- Methyl ethyl ketone peroxide(s)

Pennsylvania Environmental Hazard
This product does contain the following chemical(s), as indicated below, currently on the Pennsylvania Environmental Hazard List.

- Hydrogen peroxide
- Methyl ethyl ketone
- Methyl ethyl ketone peroxide(s)

Pennsylvania Right to Know
This product does contain the following chemical(s), as indicated below, currently on the Pennsylvania Hazardous Substance List.

- Hydrogen peroxide
- Methyl ethyl ketone
- Methyl ethyl ketone peroxide(s)

16 OTHER INFORMATION

Revision Information
Revision Date 11 JUN 2002 Revision Number 5
Supercedes Revision Dated 26-SEP-2001

Revision Summary
Sections 9, 11 & 14 Updated.

Key
NE= Not Established NA= Not Applicable (R) = Registered Trademark

Miscellaneous
ADDITIONAL INCOMPATIBILITY DATA:

Rust, copper, and brass are not compatible with MEK peroxide. 316 stainless steel, glass, polyethylene, polytetrafluoroethylene and polypropylene are preferred materials for contact with MEK peroxide. Acetone may react with residual hydrogen peroxide to form insoluble shock-sensitive acetone peroxide crystals.

Luperox is a registered trade mark of ATOFINA Chemicals, Inc.

ATOFINA Chemicals, Inc. believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be valid where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use are beyond the control of ATOFINA Chemicals, ATOFINA Chemicals expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information.